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Abstract

We studythe Liouville theory on a Riemannsurfaceof genusg by meansof their
associatedDrinfeld—Sokolov linear systems.We discussthe cohomologicalpropertiesof
the monodromiesof thesesystems.We identify the spaceof solutionsof the equations
of motion which are single-valuedand local and explicitly representthem in termsof
Krichever—Novikovoscillators.Thenwe discussthe operatorstructureof the quantum
theory, in particularwe determinethequantumexchangealgebrasand find thequantum
conditionsfor univalenceandlocality. We showthat we canextendtheabovediscussion
to si,~Todatheories.
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1. Introduction

A link betweenthe Liouville equationandRiemannsurfaceswas foundfirst
in mathematicsas a clue to the uniformization theory of Riemannsurfaces.
Much more recently the Liouville equationhas appearedin the theoretical
physics literaturein connectionwith string theory, 2D gravity andconformal
field theory (for reviews of various aspectsof Liouville theory in physics,see
[1}).
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The Liouville action appearsin the Polyakov string theory path integral
when, in order to perform the functional integration over the metrics of a
given Riemannsurface,onefixes thegaugefreedomby choosingthe so-called

conformalgauge.What oneis supposedto do next, for off-critical stringtheory,
is to integrateover the Liouville field (i.e. quantizethe Liouville theory) and
the otherrelevantmodes(ghosts,matter),andfinally integrateover the moduli
space.It is evidentthat uniformizationtheorymust play a very importantrole
here [2]. This ambitiousprogrammeetswith formidable obstacles,and,in any
case,the approachbasedon matrix integralsandon topologicalfield theoriesis
certainly more effective, for the time being.However Polyakov’spath integral
remains a basic suggestionand a basic challengein string theory. Eventually

one should be able to reconcilethe different approaches.
Anothercontext in which the Liouville theory appearsis the Coulomb gas

representationof conformal field theories [3]. For it is well known that the

Coulombgasis a set of practicalrecipesto constructconformalfield theoriesof
a certaintype, typically minimal models, which is nothing but a manifestation
of an underlyingLiouville [4,5] or conformal Toda theory. In this casethe
Liouville field does not play the role of a metric, as it does in string theory;

the metric is a fixed one on a fixed Riemannsurfaceand the most frequently
studiedcaseis the one of a flat metric in genus0. Although generaltheorems
have been formulated and partial results havebeen obtainedfor conformal
field theorieson Riemannsurfaces,almost nothing is known concerningthe
approachto conformal field theoriesin higher genusby meansof the Liouville
or Toda theories,which, we recall, provide a systematicmethod to calculate
correlationfunctions.

Whateverthe context we consider, it is clear that a better knowledge of
Liouville and Toda theorieson Riemannsurfaceswould be most welcome.
With this motivation we set out to study, in this paper, the quantizationof
a Liouville theory on a Riemannsurfaceof fixed genus.By quantizationwe
meancanonicalquantizationand to avoid misunderstandingswe recall the
quantizationprocedurein genuszero, morepreciselyon a cylindrical topology,
presentedin refs. [6—9].Therethe classicalphasespacewas definedas the
spaceof solutionsof the Liouville equationendowedwith the canonicalPoisson
bracket.It was shownthat this phasespacecan be representedby meansof free
bosonicoscillators,and,at this point, it was elementary,at least in principle,
to quantizeit by transformingthe free bosonicoscillators into free bosonic
creationandannihilationoperators.In this constructiona crucial role is played

by the appropriateDrinfeld—Sokolov (DS) linear system [10]. The quantum
constructionon the other handhingesupon the quantumgroup symmetry.

In section2 of this paperwe introduce the two (chiral and antichiral) DS
systemsappropriate for a Liouville theory on a generic genus g Riemann
surfacewith the help of the conceptof analyticconnection.In section 3 we set
out to studythe propertiesof the solutionsof the DS systems.In this context
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we found it veryhelpful to be ableto explicitly expresstheconnectionsp and~,

which specify the DS systems,in terms of basesof meromorphicdifferentials
on the Riemannsurface with two punctures.The propertiesof thesebases
(the Krichever—Novikovbases)are summarizedin subsection3.1. Therest of
section3 is devotedto the monodromyof the DS systems:it is particularly
pertinentto analyzeit in cohomologicaltermsand, in fact, we showthat it is
an SL(2,C)-valuedcocycle.

Next we turn to the study of the solutionsof the Liouville equationwhich
can be obtainedvia solutionsof the DS systems.Our aim is to identify the
solutions which are local and single-valuedon a Riemannsurfacewith two
punctures.In section 4 we discusssingle-valuedness,which imposestwo set
of constraintson p and p: the first set tells us that the zero modes of the
chiral andantichiral DS systemsaround the two puncturesand aroundthe
homology cycles should be the same (this is a generalizationof the genus0
constraint);the secondset expressesthe fact that the monodromiesof the DS
systemsmustbe representedby coboundaries(suchatype of condition is not
neededin genus0). In section5 we introduce a symplecticstructureon the
spaceof DS connections.We are thenable to calculatethe exchangealgebra
and to impose locality. It turns out that the first set of constraintsrequired
for univalenceis first class, while the secondset is secondclass. Finally we
introducethe correspondingDirac brackets.

In section6 we passto quantization.We find the quantumexchangealgebra
and the quantumanalogsof the above two setsof constraintswhich ensure
univalenceand locality. Section 7 is devoted to the generalizationof the
previousresultsto Todatheories.We think the exampleof the s13 Todatheory
is enoughto convincethe readerthat everythingworks for thesetheoriestoo,
up to minor technicalmodifications.

We mentionedabovethe two physicalcontextsin which the Liouville equa-
tion appears.It maythereforebe interestingto comparethe two corresponding
types of solutions. In section 8 we makea detailedcomparisonbetweenthe
solutions obtainedvia the DS systemsand the uniformizing solution for a
compactRiemannsurface.We concludethat the latter is not includedamong
the former.

Finally AppendicesA and B containdetaileddevelopmentsomitted in the
main text, Appendix C is devotedto analyzinganon-standardfamily of solu-
tions of the Liouville equationand, finally, Appendix D containsadiscussion
of the conformal propertiesof the Bloch wave basis.

The main resultsof our paperare: 1) the identificationof the cohomological
propertiesof the monodromyof the DS system (section3); 2) the identifi-
cationof the constraints(41), (42), (43); 3) the exchangealgebrasand the
Dirac bracketsof section 5; 4) the quantumexchangealgebraand quantum
coboundaryconditions (69) and (70) of section6; 5) the generalizationto
the s13 Todafield theory in section7.
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2. The Liouville equationon Riemannsurfaces

The basic objects of our analysis will be the solutions of the Liouville
equation.Let X be a fixed compact Riemannsurfaceof genus g > 2.*1

Usually U = {(U(~,z~)}will denotea complexatlason X. Fixing the complex
atlas is tantamountto giving the complexstructure,which will be held fixed
throughout.

The Liouville equationis

aaç~’=e2~ (1)

where0 = 8/Oz and~ = 0/0±,z beingany local coordinate.In (1) we drop
the chart label dueto its invarianceundera changeof local coordinates.For
if (U~,z~)—~ (Un,zp) with holomorphiccoordinatechangez~= f~jj(zfl), eq.
(1) will not changeits form if

= ~(f~p(z
8)) + ~ (2)

This implies in particularthat e
2~’transformsas a (1, 1)-form. We canconsider

it as the Kählerform of ametric on X if e2~is regular.This is true in particular
if the solution happensto be the one coming from the uniformization of X.

2.1. TheDSlinear system

To find a large classof solutionsof the Liouville equationwe proceedas in
genuszero [7,8] and write the linear systemassociatedto it

0Q=(pH—E~)Q, ~p=0 (3)

~=—~(~H—E), Op=O (4)

whereonce againwe drop the chart label (since we will impose the form of
theseequationsto hold in any coordinatepatch), and

(1 0\ (0 l\ (0 0H= ~ _i)’ E~ ~o o)’ E = ~i 0

The solutionmatricesQ and~ havethe form

(0i ~2’\ — (°~ 0Q=~
0 ~-~l)~ Q=~~2 ~

andlocally

~ This limitation will be held throughoutthe paperin order to avoidlengthy specificationson
genus0 andI, which could bedoneanyway. The genus0 case,in particular,hasbeentreatedat
length elsewhere.
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a,(z) =exP(fP(w)dw)~ a2(z) = _a,(z)fai(w)_2dw (5)

exp (_]~(t~)d~)~ a2(z) = a,(±)fa,(~)~2dt~ (6)

Then, in a local patch,

e~’= aMa, a = (a,,a2), ~ = (cu) (7)

is a solution of the Liouville equation,for anyconstantmatrix M.
What we have done so far is well-defined in any local chart, but now we

haveto definethe DS systemin a global way on X. Let us consider (3) first.
We remark that in order for e

2t’ to be a (1, 1) form, a
1 ando~mustbe tensors

of weight — 1/2 for i = 1, 2. This implies that the rows of Q have weights
(—1/2,0) and(1/2,0). Thusour arenawill be the holomorphicvectorbundle
V = K’/

2 ~ K’!2, whereK’!2 is a squareroot of the canonicalline bundleK.
Since thereare many possiblechoices,we fix one oncefor all.

Thenextstepwill beto definethe DS linear systemasan analyticconnection
on this vector bundle. This is, we believe,the correctandeasiestway to put
a differential equationin a global context. Generally speaking,an analytic
connectionin a holomorphicvectorbundleE overX is a map

V : E —p e ®O~ Q~

where Qy is the sheafof holomorphic functions on X, E is the sheafof
holomorphicsectionsof E andQ~the sheafof holomorphicdifferentials on
X, i.e. the sheafof holomorphicsectionsof K. Analytic connectionsdo not
alwaysexist [11]. Accordingto a theoremof Weil, their existenceis equivalent
to E being a direct sum of indecomposableanalytically flat bundles [11,12].
This is certainlynot the casefor V, sincec~(K”2) = g — 1 andthe genusg is
supposedto be > 2. Thus in such a casean analytic connectionmustbe more
properly definedas amap [13]

V :~—~ e®
0~Q~(~y)

where now Q~(*Y) is the sheafof meromorphicdifferentials,holomorphic
outsidea subset V of X.~

2Allowing for poles trivializes the cohomological
obstructionsto the existenceof (analytic) connections.Thereforeon these
generalgroundswe expectthe DS connectionto be meromorphic.

~2 One can consideralso replacing the sheafQ)~(* Y) with M ~, the sheafof meromorphic

1 -differentialson X.
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After thesegeneralremarkslet usgo into more detail. We startfrom our DS
connectionin a local chart

VDS = ~ + (—p(z) ~ dz
t.~ 0 p(z)j

andrequirethisform to be maintainedin anyotherlocal chart,thatis, applying
V to a sectionof V shouldgive a (meromorphic)sectionof V ® K. This will
give conditionson the coefficientsof the connection.First of all, the “1” into
the connectionmatrix hasan invariantmeaningif we notice that I is a section
of Hom(K’!2, K—’!2 ® K). The condition on p is the following transformation
rule:

~logk~=pp(zfl)_pa(z~(zfl))~ (8)dzp dzfl

wherek~,fl= dzp/dzaarethe transition functionsof K andk~2is a suitably
chosencollection ofsquarerootsdefiningK’!2. The condition (8) hasthe form
of a relation in tech cohomology.Indeed,introducingCc,fl = (d/dz~)log k~2,
weeasilyhave{c~}E Z~(U,Q~)and (8) takestheform {c~}= ô{p~},where

~5is the tech coboundarymap. Thus {p~}e C°(U,Q~)is the cochainwhose
coboundaryis {Cafi}. However, it is not difficult to seethat the aboverelation
cannottake place,since the cocycle {C(~fl} is the one defining the Chern class

of K’!2 [14], so that (8) can be realizedonly if we take {p~}e C°(U,M~).
This confirms our statementthat an analytic connection will in general be
meromorphic.Meromorphicconnectionson K are treatedin [24].

Analogousthings canbe repeatedfor the antiholomorphicDS (4). Once this
is doneour linear systemis well-definedon X.

2.2. Theproblem

Thereforefrom now on our problemis:
1) toparametrizethespace~ ofsolutionsoftheLiouville equationdetermined

through the recipe (7);

2) to definea symplecticstructurein ~ and to identify the subspace~o C l~of
solutionswhich aresingle-valuedandlocal with respectto this structure;

3) to quantize~o.

3. Explicit representationandpropertiesof the DS system

We set out to solve the problemjust formulated. To this end it is very
convenientto rely on an explicit representationof the connectionsp and ~.

We saw that they must be meromorphicconnectionson a spin 1/2 bundle.
In analogywith the genuszero treatment,we will choosethe simplestpossible
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arrangement,that is we will supposethat all their poles are concentratedonly
in two genericpointsP÷andP of X. Next we haveto parametrizethe space
of these connections.Using the property that it is an affine space, we can
describeall of them writing

~

whereF~is a fixed referenceconnectionandp is a meromorphicone-form.As
for f~we may choose

Fo=—Ologh, (9)

h being a meromorphic section of K”2. If K’!2 representsan odd theta
characteristicthe section h can be chosenholomorphic [15]. On the other
handanyp can be representedas

P~>Pk0)k (10)

where {wk} is a completebasis of meromorphicdifferentials holomorphic
outsidethe set Y = P~u P_ (seebelow). The samewe can do for p. Therefore
our two DS systems,and consequentlyalso the solutionsof the Liouville
equationgiven by the reconstructionformula (7), are parametrizedby the
momentsPk anduk. This is the parametrizationof the space~ we anticipated
above.

Completebaseson X like {wk} do exist and were introduced some time
ago by Krichever and Novikov. Due to their importancein our analysis,we
devote the next subsectionto recalling their definition and properties.For
more detailedinformation see [16—18,20].

Finally a remark concerningthe modesp~. In genus0 they are called free

bosonic oscillators.Here they are the closest thing one can define to free
bosonic oscillators, but they are not truly free. The Poissonbrackets (45)
below reveal the complicatedway thesemodesinteract with the background
geometryof the Riemannsurface.

3.1. K!%.T basis inX

In the following Q, Q’, Qo,...will denotepointson X, but we will often stick
to the habit of denotingthesepoints with local coordinatesz, z’, z

0 On X
let us considerthe two distinguishedpoints P÷andP~and local coordinates
z+ and z_ around them, such that z+(F±) = 0. On X we can introduce
completebasesof meromorphictensorswhich are holomorphicin X \ Y. In
particularwe will needa basis of vectorfields e~,functionsA~,I-differentials
w’

7 andquadraticdifferentialsQ’1. Here n is integeror half-integeraccording
to whetherg is evenor odd.The behaviournearP±is given by
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A~(z~)= ~ + O(z~))

w~(z±)= ~ + O(z~))dz±

e~(z~)= ~ + O(z~))0/0z±

Q~(z~)= d~~~312~2(l+

For nj < g/2 the definitions of A~and ~ must be modified, becauseof
the Weierstrasstheorem.We set Ag~2= 1, while for n = g/2 — l,...,—g/2

the power of z is lowered by one in the abovedefinition of A~.As for ~
andn = g/2 — 1, ..., —g/2 the power of z mustbe raised by 1 in the above
definition, while ~~!2 is set equalto the third kind differential

w~!2(z±) = +1(1 + O(z±))dz~ (11)

This differential is chosento be normalizedin such a way that the periods
aroundany cycle are purely imaginary. This implies that the function

r(Q) —

is univalent, for a fixed Qo E X. The level curves of this function will be
denotedC~.They reduceto small circles around P~.in the vicinity of these
two points.

The abovebaseselementsareuniquelydeterminedup to numericalconstants
due to the Riemann—Rochtheorem.So we can set for examplea~= 1, the
ak’s beingthencompletelydetermined.We can do the samefor the ct’s. As
for the remainingconstantsthey arefixed by the duality relations

~ ~dzAn(z)wm(z) ~ (12)2iri j
Cr

~ ~dzen(z)Qm(z) = (13)
2mi j

Cr

The Lie bracketsof the basiselementse~are

[en,em] C~mCk (14)

Here and throughout the paper summationover repeatedupper and lower

indicesis understood,unlessotherwisestated.One has

C~m=
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Equation(14) definesthe KN algebraover X. Its centralextensionis defined
by meansof the cocycle

X(en,em) = ~ (15)

the integral is overany simple cycle surroundingP+ in an anticlockwiseway.
For any two meromorphicvector fields f = f(z) 0/Ozandg = g(z) 0/Oz,
j(f,g) is given by

~(f,g) = (~(f”g_g”f)_R(f’g-fg’)) dz~ (16)

where’ denotesderivativewith respectto z÷andR isa Schwarzianconnection.
Then the extendedKN algebrais definedby

[en,em] = C~mek+ tX(en,em), [e~,t] = 0 (17)

In the following we will alsomakeuse of the relations

dA~ YnmW
m, Ynm = ~ ~AndAm

2~rij
C,

andof the definitions

Nr=±qcwn, AI[Z±~cWfl
27r1J 2irij

a b

where {a
1, b}, i = 1,...,g is a basisof homologycycles. It is easy to prove

[19] the relations

N,’
1ynm = 0, Mrynm = 0 (18)

The structureconstantsC~and Ynm vanishoutsidea finite bandof valuesof
n + m aroundn + m = 0.

Finally we will needtwo remarkablerelationsproven in [19]:

N~”A~(Q)=:.,4~= ±~wg!2 (19)

MrA~(Q)=:5, = l~wgJ2 (20)

In otherwords, the LHSs are constantsthat can be explicitly calculated.
As basesfor antiholomorphictensorswe choosethe complex conjugateof

the abovebasesand will distinguish them from the above onesby meansof
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a bar: A,,, etc. In particular,due to the choiceof normalizationfor the third

kind differential, we have
(21)

Using the explicit representationof p in terms of (10) and (9), one can
better appreciatewhat are the solutionsof Liouville we are analyzing: they
may in generalbe very singularat P~,but this is no novelty with respectto
genus0. These are the solutions we need in order to constructa manageable
phasespace.

3.2. Propertiesofthe DS solutions

This subsectionis devoted to analyzinga few general propertiesof the
solutions of the DS system (3). As we alreadyexplained,the DS connection
is a map

VDS : ~ —~ ~J®~ Q~’(*Y)

where ~8is the sheaf of holomorphic section of the chosenvector bundle
V = K’12 ~ K’!2. With respectto the coveringU it is a collection of mero-
morphicdifferential equations.Thus for anyopen set U,, E U we can exhibit a
fundamentalsolution Qc, of thedifferentialequationVDSQ,, = 0. This requires
a choiceof the integrationconstantsin (5). Oncethis is done, Q,, is a local
frame for V on U,,, but when changinglocal chart, on U,, fl U~we will have
the gluing law

= (k~’I~k(~2)
where ~ is a constantmatrix. This follows from the fact that Q~,and the
RHS of the aboveequationboth solve the differential equationVDSQ = 0 on
U,, n U

1~with respectto z,,. The duality symbol “v” will be explainedlateron.
Consistencyon the triple intersectionsof the matrices { T,,~} implies the

cocycle condition:

V V_ V
,~j3 fly —

Changingour choice of the local frames {Q,,} yields a new collection {Q~,}
such that

= Q~,C,,

for appropriateconstantmatrices {C,,}. This in turn producesa new cocycle
such that

= C(~IT,~VflCfl
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and thereforedescribesthe samecohomologyclass.
Thus we interpret the collection {T,~} as defining a flat rank 2 vector

bundleor, in otherterms, a rank 2 local system.The local system,in turn, is
a representationof the fundamentalgroup into the relevant structuregroup.
Due to the singularitiesof the connection,we must be cautiousaboutwhat
fundamentalgroup we are talking about. The singularitiesof the connection
come either from thoseof r0 or from the poles of the KN basis. It is easy
to see that the former can only producepoles, while the latter can produce
in generalessentialsingularitiesat P~in the solutionsof the DS system.For
thisreasonwe hadbetterremovethe pointsP~andP~.As aconsequencethe
fundamentalgroup we consideris the fundamentalgroupof X’ = X \ V.

Whatwe are going to do next is to build a collection of local fundamental
solution matrices for the DS connection,and subsequentlydescribein detail
the associatedmonodromy,i.e. the local system(this will be done in the next
subsection).

Let us discussfirst the solution ci~ in (5). We considerthe covering U =

(U,,, z,,) of X’ and a collection {Q,,} of points of X, one for each open
neighbourhoodU,,. For every rt and Q ~Q,, define

£,,(Q) :=fP~~(z~)dz~

wherethe integrationgoes alongany pathcontainedin U,, andjoining Q,, and
Q. Thus the local solution (5) is written as

a,,,(Q) = ~ a2,,(Q) = —e~’~fe2r~dz~ (22)

Now, to glue two solutions, consider the following situation. Let Q belong
to U,, n U~andconsideranotherpoint Q’ still belongingto the intersection
U,, n Up and lying, say, on the path from Q,, to Q. Thenwe have

~,,(Q)=f~~(z~)dz~= (i’+i) p,,dz,,

I I I /dz,, 1/2j p,,dz,,+ J ppdzp + J dIog~—

=fP~dza +fPpdzp +fP~dzp + lo~(~)~
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1/2
Lp(Q)+log(~—J (Q)+b,,p

\U_fl /

with

b,,p =JP(xdz,,—f P11dzp —log (dz;)l/
2 (Q~)

So we obtainthe transformationrule:

d- 1/2
a,,,(Q) = c,,p(~±~)(Q)a,p(Q) (23)

with c,,p = ~ The transformationrule (23) is meaningfulas b,,~(or c,,p) is
a number, i.e., it doesnot dependon the point Q’ used to calculateit. This is
easilyseensimply choosinganotherpoint Q”. If Q’ and Q” bothlie in U,,n Up,
by using (8) we obtain

fP~dZ~= ~ + fdlo~(~)
Qf / Q// Q/f

which provesthe assertion.
We havegiven explicitly the abovederivationas a sampleof the calculations

we use. Fromnow we will be much more succinct.
On a triple intersectionU,, ii Up n U, it is easyto verify the cocyclecondition:

c,,pcpy = c,,p

Thus we have constructeda collection {c,,p} with values in C~satisfyingthe
cocycle condition on our RiemannsurfaceX’.

Finally weshoulddiscusswhat happensif we changethe referencecollection
from {Q,,} to {Q’,,}. It doesnot presentanydifficulty to see that {c,,p} changes
by a coboundary,that is

c(,p ~‘ c~= a,, c(,fl ap —~

wherethe non-zerocomplexnumbera,, = exp(f~p,,).
In summary, the differential equation

= pci,

can be solved on the non-compact Riemann surface X’ = X \ Y The solution
involves the 1-cocycle {c,,p} with values in C~,and we denoteby C the cor-
respondingcohomologyclass in H’ (X’, C*). By the usual correspondence,C
is a flat line-bundle over X’. Thus a, is actually a meromorphicsection of
C® K~’/2 (becauseof the zerosof h).
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Let us takeup nextthe constructionof cr2. We usethe sameschemeas before,
namelywe considerthe point Q lying in the intersectionU,, fl U11 togetherwith
the pathsjoining it to the referencepoints Q,, and Qp. We find

a2,,(Q) = d,,11 k,,11(QY*’
2 a,p(Q) + c,,

11~k,,11 (Q)’/
2 a

211(Q) (24)

with

d,,11 = _cnpfe_2~~~dz,, + c,,pfe2Cfl~P) dzp

whereQ ~ U,, fl U11. Again, the numberd,,11 doesnot dependon the point used
to calculateit. Thereforethe transformationrule (24) is well-defined on X’. It
is apparentthat the field a2 doesnot simply transformas a spin — 1/2 tensor.
Although the conformal weight —1/2 is preserved,a1 and a2 get mixed upon
changingthe local chart:

(ci,, ~ — k”
2 ( c,,p 0 ~ (cilfl

\~C
2 ) — “1~ ~ d,,11 c,,~

1) 1~,o
2~

or, passingto the collection {Q,,} of fundamentalmatrices
/ —1/2 \ /

— ~ k,,p 0 ( C,,p d,,11
0 k~

2) ~ 0

From now on we denoteby T =: ~T,,
11} the collectionof matrices

T (c,,p 0
— ~ d,,p c,,~’

For T the cocycle condition T,,pTpy = T,,~holds. Indeed,written in termsof
d, this means:

= c11., cl,,11 + c,,,) d11~

which canbe checkedstraightforwardlyin the triple intersectionU,, fl U11 fl U~.
It remainsfor us to examinewhat happenswhen we changethe reference

point collection {Q,,}. Passingto the referencecollection {Q~,}, {d,,11} trans-
forms as

= a,,’a~’d,’,11 + c~11f,,a~’ —

and this relationcan be recastin matrix form
T (a,, 0 ~ T’ (ap 0

~ a~’) ,,fl~f11 ad’)

thus showingthat the cocycle { T,,11} is replacedby a cohomologousone.
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Thus the matrices{T~} do form an SL(2,C )-valuedcocycle.We denoteby
T the correspondingcohomologyclassin H’ (X’, SL(2,C)). T is a rank-2flat
SL(2,C) vector bundleon X’, or, as we alreadysaid, a rank-2 local system
[14,12].

The solution of the DS systemwe havejust producedis to be properly
interpretedas a sectionof K’/2 ® T on X’.

For the matrices{T~} introducedabovewe have

T~=(~fl -d~fl)1T~J

The notationhasbeenchosenin sucha way that TV is indeedthe dualof T.
The nextstepis to describein moredetail the structureof the flat bundle T

so constructed.Due to the fact that the cocycle T is associatedto the multi-
valuednessof the local determinationsof the solution, it is natural to refer to
T as the monodrornyof the DS system.

3.3. A descriptionofthe monodromyof theDS system

In this subsectionwewant to expressour monodromyT in a way as explicit
as possible in terms of the variablesPk. We start with a few preliminary
remarks.

The flat bundle T, i.e. the monodromy of the DS system, is the same
thing as a representationof the fundamentalgroup ir~(X’) into SL(2,C) (up
to conjugation). This follows from the general fact that for any connected
manifoldM andany (Lie) group G we have

H’(M, G) ~ Hom(ir,(M), G)/G

where the quotient is taken with respect to the action of G on itself by
conjugation[21,14]. Givenan elementF of H’(M, G), which is a flat bundle
on M we will denoteby F the correspondingelementin the other spaceand
call it “the characteristicrepresentationassociatedwith F”. We shall exploit
the explicit form of the aboveisomorphismin orderto producerepresentatives
for the various cohomologyclassesdirectly in termsof suitable line integrals
over closedpaths.

Consideredas a vector bundleour monodromyT hastriangular transition
functions, so from thatpoint of view it is an extension

O—4C —~T--~C----+O

wherethe flat line-bundleC appearsas a quotient.In view of the isomorphism
just describedit is arepresentationtaking placein the (lower) Borel subgroup
of SL(2,C). This fact allows us to separatelyanalyzethe componentsof the
representation.
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As for the flat line bundleC, in view of the isomorphismmentionedabove,
it is an elementof

Hom(H,(X/),C*)

This follows from the fact that, C* being commutative,the homomorphisms
of the fundamentalgroup to C* factor through ir~(X’)/[m, (X’), it, (X’)] ~
H,(X’).

We recall that the projection of the fundamentalgroup of the non-compact
surfaceX’ onto H1 (X’) kills the commutatorsubgroup,so that the latter is
freely generatedby the symbolsa,,..., ag, b,,..., bg, c0, wherec0 is a small
circle surroundingP÷~.

Thusthe line bundleC is the samething as a characterof the first homology
groupandit is determinedby its valueon the generatorsa1,...,ag, b,,. . . , bg, C0

of the group. Below we will see that the parametrizationprovided by the KN
basisgives a formula for the characterc so determined.But before doing
this, we treat, at the samelevel of generality, the off-diagonal term in the
monodromy.

We recall that T is the extensionof C by C’. This meansthat the extension
classrepresentedby T is an elementof the cohomologygroup

H’ (X’, ~_2)

whichmeansthe first cohomologygroupof X’ with valuesin the sheaf~2 of
locally constantsectionsof the flat bundle C

2 = C’ ® C~’ [12].

This elementin H’ (Xm, ~2) is determinedin the following way. Recall the
identity:

d(
17 = Cpy d,,11 + c,,11’ dpy

satisfied by the quantities {d,,11} introduced in (24). Following [12], we
rewrite it by introducingthe 1-cochain {s,,p} = {c,,11 d,,11}, therebyobtaining
the identity

S,,7 = c~7S,,p + S/Jy

This identity is in fact the cocycle condition for the 1-cochains = {s,,11} with
values in the locally constantsectionsof the flat line bundle C

2. However
we shouldverify thatour proceduredoesdefine an elementof a cohomology
group. In other words, a new cocycle {s,ç

11} which differs from the previous
oneby acoboundary,shouldbe associatedessentiallyto the samedatafor our
differential equation.The cochainrelations’ — s = ó (f) hasthe explicit form

5~p= S,,p + fp —

~ We makethe slight abuseof languageof denotingwith the sameletter both an elementof the
fundamentalgroupandits imagein the first homologygroup.
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Now supposesuch a collection {f,,} is given. Dividing by c,,11 and taking into
account the explicit form for d,,11 previously found, we see that shifting by a
coboundarypreciselyamountsto a changein the integrationconstantsin the
indefinite integralsdefining{a2,,}. In otherwords,this is the sameas changing
the initial points in the integraldefining {a2,,} in (22).

Thus the off-diagonal elementof the monodromyalso hasa cohomological
interpretation.

Let us now give an explicit representationfor the classesin H’ (X’, C’)
andH’(X’,~

2) in termsof the KN parametrization.More precisely,for any
elementy of the fundamentalgroup, we provide representativesc

7 and s7 in
termsof line integrals.Let

= r0 + Pr,

where F0 is given by (9). We recall that the sum over repeatedindices is
understood.Now we plug this expansionin the local expression (22) for
a1. We keepthe usual definitions andnotations for the covering U and the
referencepoints {Q,,}. With an easyintegrationwe find

a,,,(Q) = er~~= h,,(Q)’h,,(Q,,)exp

h,, is the determinationof h in the chartU,,. Consequentlywe get

c,,11 = h,,(Q,,)hp(Qp)’exp~
Now we exploit the descriptionof the fundamentalgroup of X’ by means
of chainsof open sets (see Appendix A). We fix a basepoint Qo E X’ and
an open set U0 containing it. We considera path y and a covering chain
(U,,r,, U,,,..., U,,,,U,,,), U,,, = U0. The characterc associatedwith the cocycle
{C,,p} is given by the formula (seeAppendix A)

=

which, togetherwith explicit form for the 1-cocyclequotedaboveyields

C7 = exp (25)

Being a characterof the first homologygroup of X’, c is definedby its values
on the generators:
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Ca
1 = exp(2itiNJ’p~)

Cb1 = exp(2niM7p~)

wherethe numbersM7 and N,” where definedin subsection3.1 andare in
principle explicitly computable,usingthe concreteexpressionfor the KN basis
[18,20] in termsof 0-functionsandprime form of X, the compactcompletion
of X’.

The value of c on the cycle C~ c0 around the puncture P÷has a very
simple form:

cc, co = exp (Pn ~ = e
2~1Pg/2

Next we have to characterizethe off-diagonal elementof the monodromy
in the sametermsas we did for c. This is a rather long calculation and it is
postponedto Appendix A. Here we record the result. The representatives,
correspondingto theclosedpath y is an algebraiccocycle for the group it

1 (X’)
with values in C, that is a maps: ir~(X’) —p C satisfyingthe cocyclecondition

Cy~Sy~+ ~Y2

or, in technicalterms,what is called a crossed homomorphism of it, (X’) into
C with respectto the characterc

2. The set of all crossedhomomorphisms,
modulo the trivial ones, forms a group denotedH1 (it, (X’),c2) which is
actually isomorphic to H1(X’,~2) (seeAppendix A and [12]). The actual
elementdeterminedby the DS systemis given by

s,, = —ho(Qo)2exp(
2~~~cok)~exp (_2PkI(ok)h(z)

2 (26)

where y is a closedpath on X’ basedat Qo coveredby an appropriatechain
of open sets.The s

7 for y = c0 will be denotedfor simplicity s0.
A few commentsare in order.The integralon the RHS of (26), as it stands,

shouldbe properlydefinedon the universalcoverof X’. This is dueto the fact
that the integrandis multivaluedon the surface. Thus formula (26) can be
readin two ways. Interpretingthe integralon the RHS as an integral over the
universalcoveringspace,(26) becomesan instanceof the fact thatelementsof
the group H’ (it, (M), F) can be representedby meansof differential I-forms
on the universalcoveringspaceof M “twisted” by the characterF [12]. On
the other hand, (26) saysthat the LHS can be used to define the integral on
the RHS, therebygiving a full meaningto a way of naively continuing the
integralsin (22), outsidetheir domain of definition, alonga completepathon
the surface.
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An immediateformal manipulationof the integralformula (26) so obtained
yields very easilythe cocycle condition for s,.The latter will rigorously follow
from the formulasin Appendix A.

Finally we can do the samefor the antiholomorphicDS system (4). In
particular we find anotherrepresentationof it

1 (X’), with representativesof
the generatorswhich can be written in the following form:

= exp i~nfc~” (27)

and

= ~0(Q~)
2exp (_2uk~~k)~exp (2ukf ã)k) h(~)2 (28)

4. Single-valuedsolutions

In the previous section we clarified the geometricalmeaning and found
explicit expressionfor the cocyclesc

7 and s7 for any cycle y. In this section
we will select in the space~ the solutionsof the Liouville equationwhich are
single-valuedon X’. As wewill seethis correspondsto puttingconstraintson ~.
We will proceedin two steps.First wefind the conditionsfor single-valuedness
aroundP~,thenaroundthe homotopygeneratorsof X.

4.1. Single-valuedness around P~

We usethe reconstructionformula (7) anddeterminethe conditionsfor the
solution to be single-valuedaroundP÷.The problemis the sameas in genus
0 andwe will simply summarizethe procedure.We start from the solutions

cr(Q) = (a,(Q),ci2(Q)), ã(Q) = (~‘~) (29)

of the DS systems(3) and (4), respectively,

= exp (IP(z)dz). a2(Q) = _ai(Q)fa,(z)2dz (30)

= exp (_f~)d~)~ a2(Q) = ot(Q)fat(~2d~ (31)
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wherethe only differencewith respectto (5) and (6) is thatwehavefixed the
initial integrationpoint Qo oncefor all: we fix a curve C, andwe understand
that Qo is a fixed point in it. This allows us to order the points in C, in an
anticlockwiseorderwith respectto P÷startingfrom Qo. Sucha choice is very
convenientanddoesnot hinder the generalityof our resultssincewe showed
in the previoussectionthat nothingreally dependson Qo. ~

The monodromyof thesesolutionsis easily foundto be

a(Q+ C,) = a(Q) tT
0, T0 = ( ~ (32)

C0 5~ C0

~(Q+ C,) ~oU(Q), ~o = (~~,) (33)
C0 ~o C0

wherec0, s0, ~, ~ weredefinedin the previoussection.The notation T0 for the
monodromymatrix agreeswith the notation of subsection3.2 of the matrix
T,,11. In T0 the entries are representativesof the cocyclesc and s along the
cycle C’,.

Now equation(7) givesa single-valuedsolution aroundP~if M is given by

M = gop/ic (34)

whereg0 diagonalizes‘T0,

tT0 = g0D0g~, D0 = (~~,),
go = (1 c~soRc’ _c0)) (35)

and, similarly

To = g0D0g0’, D0 1 ~ ~‘~‘

go = (e~’~0/(e0_e~’)1 ) (36)

The matrices

p = e”
11, p = e’~11 (37)

where q and q are constants,do not play any role here, and they are only
introducedfor laterpurposes.

The result of this constructionis that if we introduce

= a(Q)gop, ~7(Q) = ~g,~~’U(Q) (38)

~ Changingthe base-pointis an isomorphismof the fundamentalgroup.
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on this new basis,the Bloch wave basis, the monodromyis diagonal

yi’(Q + C,) = yi(Q)Do, ~J(Q+ C,) = D0~T(Q)

Thanksto this propertythe solution of the Liouville equationgiven by

e~’ = y/~ii (39)

is single-valuedaroundP~if D0D0 is the identity matrix, i.e. if

C~
1= ë

0, or Pg/2 = Pg/2 (40)

This is the constrainton ~ thatguaranteessingle-valuednessaroundP+.

4.2. Single-valuednessaroundthe remainingloops

The phasespace~ hasto be further restrictedif we want the solution (39)
to be single-valuedon the whole Riemannsurface.A simple way to find the
constraintsis as follows. Let y be any homotopically non-trivial loop for X,
then

çi’(Q+y) = y/(Q)plg~ltTygop

~7(Q+ y) =

Thereforeunivalenceis guaranteedif
1T,MT, = M

where M is the sameas in eq. (34). A simple calculation shows that this
implies

C~1= (41)

s, — (1 —C~)= 0 (42)
C

0 —C0

~ -~ ~ (1 -~) = 0 (43)

Co —Co

The conditions (42) and (43) tell us, from a cohomologicalpoint of view,
that the cocycless7 and~,, respectively,arecoboundaries(seesubsection3.3).

It is clear that, in order to guaranteeunivalenceof the solutions (39), we
haveto impose2g such setsof constraints,one for eachgeneratorin it1 (X).

The constraints(41) canbe written

M,”p~= I~J5,,, N,”p~ = N~’u,,, i = l,...,g (44)

As for the remainingconstraints,let usdenote them, for practicalreasons,
~r0afld~’r~0,r 1 ,2g.
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In conclusion,thephase space of the single-valued solutions is ~ restricted by
the 2g + 1 conditions(44) and by the 4g additional constraints~r = 0 and

,2g.
To concludethis section,we remarkthat so far we have talkedonly about

sufficient conditions for single-valuedness.However it is easy to convince
oneselfthat the constraintsgiven abovearealsonecessary.Anyhowthis will be
clear from Appendix B, where a less simple-mindedderivation of the results
of this section is given. In Appendix C we presenta family of solutionsof
the Liouville equationdisconnectedfrom the onesdiscussedso far. They will
not be includedin our phasespaceandare unexploredfrom the quantization
point of view.

5. Exchangealgebraand locality

In this section we define a symplectic structure on the phase space ~,

calculatethe exchangealgebrafor the Bloch wavebasisanddiscusslocality for
the solutionsof the Liouville equationin X’. Throughoutthe sectionwe fix a
curve C, anda referencepoint Qo on it.

5.1. Thesymplecticstructure

A symplecticstructurein ~ canbe definedby meansof the Poissonbracket

{Pn,Ppn} = Ynm (45)

If we rememberthat

p~= ~~fp(z)An(z)dz, p(Q) p(Q) +F0(Q)

we find immediately

{p(Q),p(Q’)} = —/3z1(Q,Q’)

where4 (Q, Q’) is the ö-function appropriatefor 0- and1-forms along C,.

The symplecticstructurethus definedis degenerate,for we have
{Pg/2,Pn} 0, {NT”pm,pn} = 0, {Mi”pm,pn} = 0, Vn,i (46)

as a consequenceof eq. (18). We can eliminatethe degeneracyby enlarging

the phasespacewith the addition of the a new variable q suchthat

{q,p,,} = —A,,(Q0) (47)

We have in particular

{q,pg/2} = —1, {q,N~pm} = —A,, {q,M[”pm} = _B~ (48)
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Due to (19) and (20) and the way we normalizedthe third kind differential,
we see that the degeneracyis eliminated. The q introduced here is the one
appearingin eq. (37).

We have to define the symplectic structurealso for the antiholomorphic
degreesof freedom.So we set

{i5n,~m}= H~nrn

Moreoverwe introducethe multi-conjugatevariable

= —A,,(Q0)

All the remainingPoissonbracketsvanish

{pn,zim} = 0, {q,z~~} = 0, {~,pn} = 0, Vn,m

In Appendix D we investigatecompatibilitybetweenthe symplecticstructure
introduced hereand the tensorialpropertiesof the various basesintroduced
in section 4. In fact one expectsthe tensortransformationpropertiesto be
generatedby the energy—momentumtensorthroughtheabovePoissonbrackets.
Only the ~,t’basisfulfills such a compatibility requirement.

5.2. Theclassicalexchangealgebra

The exchangealgebraconsistsof the Poissonbracketsof the componentsof
the a basisor the i,ii basisamongthemselves,evaluatedattwo differentpoints
Q and Q’ of C,. In the following it is essentialto keepin mind what we said
in subsection4.1 about the ordering of the points on C, with respectto Qo.
We will write Q > Q/ or Q < Q’ accordingto whetherQ comesafter or before
Q”, if we run C, startingfrom Qo in an anticlockwiseway as seenfrom P÷.

The calculationof the exchangealgebrais not very differentfrom the genus0
case(see,for example,ref. [7]). Thereforewe will avoida detailedexposition,
but we cannotavoid a few specifications.For examplea simple calculation
gives

{a,(Q),ai(Q’)} = YnmfWn(Z)dZfWm(W)dW

Using the propertiesof the KN basesone finds that the RHS of this equation
canbe written as

2iri(EQ0(Q,Q’) ~Q,(Q,QO) + �Qo(Q’~Q0))

wherewe haveintroducedthe symbol

C Q,(Q,Q’) =

0Q
0(Q,Q)—OQ,(Q’,Q)
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andthe 0 function is definedas follows for any 1-form ~

~dQ’~(Q’)00r,(Q,Q’) =fdQ’~(Q’)

To simplify ourlife we choosehenceforthboth Q andQ’ > Qo, so that

Yn~fWn(Z)dZfWm(W)dW = 2iti�Q,(Q,Q/) (49)

Fromnow on the calculationis straightforwardandonefinds — henceforthwe
adoptasimplified notationto avoid the awkwardfactor 1 /2iti in the formulas;
therefore,unlessexplicitly statedotherwise, { , } will standfor (1/2iri){ , } —

{a~(Q),a~(Q’)} = ~Qo(Q, Q’)a, (Q)ti, (Q’)

{a2(Q), a2(Q)} = �Q,(Q, Q’)a2(Q)a2(Q’) (50)

{a, (Q), a2(Q’)} = ~~QO (Q~Q’)a,(Q)a2(Q’) —

40Q,(Q’, Q)a
2(Q)a,(Q’)

We eventuallyneedthe exchangealgebrain the yt basis.We have

Wi = ~ ~2 = ~ + ~l ~0 ~O
C0 —C0

andthe calculationis straightforwardon the basisof the previousremarksand
the rulesof the previoussubsection.One obtains

{tji,(Q),t,c,(Q’)} =

{W2(Q),W2(Q’)} = 6Q0(Q,Q’)W2(Q)c”2(Q’) (51)

{~‘i (Q), W2(Q)} = —EQ,(Q,Q’)w, (Q)W2(Q’)
_4( C0 + 0Q0(Q’,Q))yi2(Q)yJ,(Q’)

Co ~Co

Similarly for the antichiralhalf one *5

{~7,(Q),~ (Q’)} = °~Qo(Q,Q/)~1(Q)~1(Q~)
{~2(Q),~72(Q’)}= —�~,(Q,Q’)~i2(Q)~T2(Q’) (52)

=

- +
0Qo (Q” Q))~

2 (Q)~, (Q’)
C0 —CO

~ Onemaywonderwhy in theantichiralexchangealgebrawe do not usethe~andthe 0 symbols,
i.e. the � and0 distributionsexpressedin termsof theantichiralbasis.The reasonis that,when
limited to C,, � (0) andi~(0) are different representationsof thesame objects.
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5.3. Locality

By local solutionswe meanthosefor which

= 0, Q,Q’ E C,

With the above exchangealgebrasin the Bloch wave basis we can easily
compute

= ~ C0C0C~C~ -

(C
0 —Co)(C0 —C0)

x (w~(Q’)~7,(Q)W2(Q)W2(Q’) —

Thereforelocality is guaranteedif

C0’ = C~j

i.e. the sameas (40).
In conclusion,the phase space ~o of the single-valued and local solutions is

~ restrictedby the 2g + 1 conditions (44) and by the 4g additional constraints
Fr0andFrO,r1 2g.

5.4. Other remarkablePoissonbrackets

One maybe interestedin the exchangealgebrain the covering spaceof the
Riemannsurface, in particular in what happenswhen we Poissoncommute
our solutionsafter going aroundP+ a certainnumberof times. The answeris
particularly simple in the Bloch wavebasis.Let us set

w~”~(Q)= yi(Q + nC,)

Then it is easyto calculatethe exchangealgebra

{w~”~(Q)W(m)(Q/)} = (e~o(Q Q’) + (n - m))n)(Q)~m)(Q/)

= (EQ0(Q,Q’) + (n_rn)) )(Q)w4m)(Qf) (53)

{~,(n)(Q) ~~(m)(Q/)} — - (�~. (Q, Q/) + (n - m)) ~ (Q)W(m)(Q~)

_4( C0 + OQ,(Q,Q))~(m)(Q)W(n)(Q/)

C0 —C0

Another interestingquestionis the calculationof the Poissonbracketsof the
constraints .Fr found above.They areessentialin order to computethe Dirac
brackets (seebelow). To this end we have to computethe Poissonbrackets
of the cocycless, with one another.From the previousexperiencewe know
that we have to be able to define an ordering of the points on the curves
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over which the cocycles in questionare defined. We proceedas follows. We
considerthe curve C, passingthrougha fixed point Qo and, keepingQo fixed,
we continuouslydeformC, so thateventuallyC, overlapthe curvesin question
(exceptpossiblyfor a setof pointsof measurezero).Onecanconvinceoneself
that this is alwayspossible,andcanbe done in a definite order, for example
a1, ..., ag,bg, ..., b,, c0. This establishesan ordering accordingto which we run
the various curves one after the other, starting from Qo and following the sense
determinedby the initial curve C,. Therefore,given two different curves y,

and Y2, we canevaluate

{s,,s,,} =CYlCY2{~a~2(Z)dz,~a~2(W)dW} (54)

=4CyCy2~dz~dwaj2(z)aj2(w)fQ,(z,w)

= +
4 S

71 S72

the + (—) sign dependingon y, coming after (before) Y2 according to the
above mentioned ordering.

OtherusefulPoissonbracketsare

{p,C.,} = —PC7X,H (55)

{p,s,} = 2(1 X,)Ps,H (56)

5.5. Dirac brackets

In order to guaranteeunivalenceof the solutionsof the Liouville equation
we hadto impose,in section4, the constraints(41), (42) and (43). The first
set are first classconstraints,for

{e~,c~ —ë~}= e~(c~’~,—ë,~,)= e~(C~’—ë,)X, (57)

where x, is either A, if y = a,, or 13, if y = b,, or 1 if y = CO, and similarly
for the barredquantities.The last equality follows from eq. (21).

The F and~i~’constraints,on the contrary,aresecondclass. it is not hardto
computethe Poissonbrackets

{ Fr,Fs} = Crs,

{ Fr,Fs} = Crs,

while

{Fr,~s} = 0
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for all r, s = 1, ..., 2g. The matrices C and C are non-singular. Therefore,
for anytwo functionsF and G on the phasespace,we can define the Dirac
brackets

{F,G}, = {F,G}~{F,Fa}C~,’{.Fh,G} (58)

wherewe usethe collective notation Fa = (Fr,~r), a = l,...4g andC is the
direct sum of C and ~‘.

We have to usethesebrackets in the restricted phasespace~o whenever
we require univalence.In particular we should be careful about the first class
constraints(41). However it is easyto verify that the Fa constraintsPoisson
commutewith c~’— ë,, thereforeeq. (57) continuesto hold even if we replace
the Poissonbracketswith the Dirac ones.Let usalsonoticethat passingto the
Dirac bracketspreservesthe conformal propertiesof the Bloch wavebasis,see
Appendix D.

Finally, a remark concerninglocality. Locality is definedwith respectto a
fixed contour C,. Therefore, the proof of locality we gave above is perfectly
adequate:locality is referredto the initial Poissonbrackets,not to the Dirac
bracketsjust #6 In other words the logical order should be the
following: first secure locality with respectto the original Poisson brackets,
thenimpose univalence.

6. Quantization

Quantizingthe Liouville theory is the necessarystep to the ultimate aim
of calculatingcorrelationfunctions. Here we do not arrive that far but limit
ourselvesto the preliminary step of exposingthe operatorstructureof the
quantumtheory. This is not adifficult task, as this problemis quite analogous
to the genus zero case and we can follow the procedureoutlined in ref.
[9]. There,quantizationwas consideredon a lattice as latticequantizationis
particularly adapted to revealthe operatorstructure.Howeverthe main result
can be immediatelytranslatedinto a continuumlanguage.

A hint for quantizationcomesfrom the substitution

[ , ]=ih{ , }
which meansin particular

[Pn,Pm] = ihynm

#6 Imposing locality with respectto the Dirac bracketswould completely distort the senseof

locality as we have seen that the Dirac bracketsunderstandan arbitrary deformation of the
contour C~.Consequentlythis kind of locality would meanPoissoncommutativityat two generic
points, insteadof commutativity with respectto two points on a fixed C,, i.e. atfixedEuclidean
time.
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for the bosonic oscillators.
One can constructa set of consistent rules that lead in particular to the

following quantumexchangealgebrain the a-basis:

a,(Q)a2(Q’) =a2(Q’)a1(Q)R~2, + Wh~fl Q>Q (59)

In this sectionthe labels 1 and 2 appendedto a do not representthe two
componentsof a as before,but

a,=a®l, a2=l®a

andRj~= (R~Y’ is the well-known s12 quantumR-matrix in the defining

representation
(q 0 0 0\

R~— —1/2 ( 0 1 x 0 (60)
,2—q (00 1 0

\0 0 0 q

where q = exp(—ih) andx = q — q’. An algebralike (59) is discussedin
[22].

After diagonalizingthe quantummonodromymatrix one can then define
the Bloch wavebasis in just the sameway as we did in the classicalcase,and
find the correspondingquantumexchangealgebra

= W2(Q’)W,(Q)7?~(C0), + ~ ~ (61)

wherelZj’2(co)) = (1~(c0))~is the quantumR-matrix appropriatefor the
~,t’-basis

qO 0 0

= q”
2 xa~ 1 —x2a

0b0 (62)

Here

C0 ________
a0= ,, b0= —,

C0—C0

and C0 is the quantumversionof the cocycledenotedwith the samesymbol in
the previoussections.

6.1. Quantumlocality and univalence

Quantum locality of

=
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can be easily discussedalong the lines of ref. [9]. It can be easily seen to
dependon the condition

= 1 (63)

If this condition canbe imposed,locality is guaranteed.We will see that this
is indeed so. But to understandthis and the forthcoming points we have
to know the quantumalgebra of the C7’s and s,’s among themselvesand
with the remaining degreesof freedom, in particular we should define the
quantum analogsof the Poissonbracketsof subsection5.4. Following the
generalformulasof [9], this is not difficult. Foranyy =

we have

pC7 = q~’

11C,p (64)

while C
7 commuteswith any other operatorof the theory. We recall that x7

was definedin connectionwith eq. (57). As for s, we have

ps, = q
2(Xr’)”s,p (65)

s,
1s72 = q+

4s,s, (66)

The±sign in the last equationhasthe samemeaningas in eq. (54). It is then
easyto verify that

~ = e°~Q~c,ë, (67)

thereforewe are allowedto imposethe condition

C
7C7 = 1 (68)

which, in particular,guaranteeslocality whenC7 coincides with c0#7

Next we studythe conditionof quantumunivalence.We can imposefor any
y the quantumcondition

1T,MT, = qXYM

whereM is the quantumversionof eq. (34). A simple calculationshowsthat
this implies (68) togetherwith

= ~—(l —C~) (69)
C

0 —Co

= C?SO (1 -~) (70)
C0 —C0

Theconditions (42) and (43) arethe quantumanalogsfor the cocycless, and
~, to be coboundaries.

~A.ctually, in orderto impose (68) one hasto suitably normalizethe quantumbasest” and ~7.
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In conclusion, if we imposethe conditions (68), (69) and (70), exp(—~)
is univalentaroundy up to the numericalfactor qX~.

In order to impose the above constraintson the statesof the theory, an
approacha la BRST should be convenient.

7. Higher rank Todafield theories

So far we have implementeda method for constructingsolutions to the
Liouville equationbasedon the DS construction,in muchthe samefashion as
in [7]. Therethe constructionwas for Todafield theories(T0FT) basedon an
arbitrary simpleLie algebrag in a representationindependentway. Therefore
one may wonderif the setting we are consideringhere extendsto thesemore
general cases.Although we havenot yet worked out the problemin its full
generality,we can show (through a simpleexample)that the SL(n,C )-ToFT
showsthe samefeaturesdescribedabove for the Liouville case.In particular
second-classconstraintscorrespondingto the off-diagonal monodromieswill
showup.

To beginwith, let uswrite down the rank n chiral DS systemin the form*S

(71)

where ¶~3takes its values in the Cartan subalgebra1) of sl(n,C) — i.e. it
is a diagonalmatrix with vanishing trace — and ~ is the constantmatrix

>71,’ E,~,,E,~being the matrix with the (i,j)th entry equal to I
andzero elsewhere.For simplicity we do not explicitly write down here the
correspondingformulas for the antichiral part.

Relyingon [7] andour previousexperience,we promote the collection of
DS linear systemsdefinedfor each local chart to an analyticconnectionVDS
on the vectorbundle

W = V®~=

where®~denotesthe nth symmetrictensorpower. Thereforeall the remarks
previouslymadeconcerningthe polesof the connectionconservetheir validity
here,since W is a direct sum of line bundleswith non-vanishingfirst Chern
class. We remark also that, thesetof all DS connectionsbeingobviouslyaffine
over the vector spaceb ® M~,we canstill introducethe KN parametrization

= T~O + >PkWk

wherenow the {Pk} areli-valued modesand {w”} is the usualKN basisof 1-
forms.As in the Liouville case,from the first row of the fundamentalsolution

*8 We shall stick to the case G = SL(n,C) in the fundamentalrepresentation,so that this “n” is

thesame asthe rankof the DS linear system.
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Qwe obtainthe chiral multiplet {a,, (z,,)} behavinglike a meromorphicsection
of W ® T over X’ = X \ {P~,P_}, and T is the appropriatemonodromyto
be calculatedas in SL(2,C) case.

Let us give some explicit formulas in the relatively simple case G =

SL(3,C). The DS connectionhasthereforethe following form

1 0 \
V’~’=/3+~ 0 P2 I )dz

\. 0 0 p~)

with Pi + P2 + p
3 = 0. Requiring VDS to define a connectionon W =

K’ + C ~ K implies that
• —p~is a (meromorphic)connectionon K’ = T;

• —P2 is a (meromorphic)1-form;
• —p3 is a (meromorphic)connectionon K.

At this point onecould also easily write down explicit local formulas for
a(z) = (a,(z), a2(z)a3(z)) in a similar form to (5) and (6) (exceptthat
the level of nestedintegralsis augmentedby one),but the resultingexpressions
are not very interestinghere.Insteadwe shallbe concernedwith the resulting
local monodromymatriceswhich we write in the form

fei,,11 0 0
T,,11 = ( d,,,11 c2,,11 0 , c1,,11c2,,11c3,,11 = 1 (72)

\ d3,,11 d2,,11 c3,,/J /

One can easily verify that the cocycle condition for { T,,11} indeed holds, so
that it defines a flat SL(3,C)-bundle over X’. Accordingly, the extensionit
representsis given by the classes

[s2] e H’ (X’,~30 (u), 52,,fl =

[si] e H’ (X’,~2® ~), s1,,11 =

whereas{d3,,11} is suchthat

[s3,s2] E H’(X’,~3®~), S3,,~=

if F, is the flat bundlewhose representativecocycleis given by

F — (c,,,p 01,,/3 —
~ u,,,11 c2,,11

and l~,is the correspondingsheafof locally constantsections,so that T is
thoughtof as the extension

0 C3 T F, 0
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On the otherhand,if F2 is the flat bundledefinedby the cocycle

(c2,,11 0
F2,,11 =

\ U~,,fl c3,,11

then

[F2~ (p)] EH
1(X’,~

2®~)

andT appearsas

0~F2~T~C,~0

Thus the flat structurecoming out from the DS differential equationis in
agreementwith the generaltheory [12], as expected.

Now, using also the antichiral half of the theory, we require the bilinear
form

to be univalent (up to the tensortransformationproperties,of course)upon
changinglocal chart.Here {M,,} is a collectionof constantSL(3,C) matrices.
Quite obviously there is also the representationspace picture, so that the
univalencecondition translatesinto the familiar one

MT, =T~’M

for any y e it, (X’). It is clearthat identicalformulas must hold in the more
generalSL(n,C) case.

If n = 3 thingsarestill sufficiently simplethatonecanwork out a componen-
twise calculation. The result is the following set of necessaryand (obviously)
sufficient conditions:

7 = C~7’, i = 1,2,3

~2I —~
s17 = ~—(l —c,,c27 )

-
4t2 -

Si, = ~—(l —C,

7C27 )

52~= —(1 —C27C37 )
— m32 —
s2, = —(1 — C27C37 )

m13 —, m23 —,

S37 = —(I —C17C37 ) — —c~,c37 s17

- m31 - —, m32 - — —, -53y = —(I C,7C37 ) — —C27C31,
5iy (73)
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wherern,1 arethe elementsof M and4,] is the subdeterminantrelativeto rn,1.
A little thoughtshowsthat theseare precisely the conditionsfor T andT to
be bothequivalentdiagonalbundles (i.e. direct sums).

Since from [7] it follows that the monodromiesaroundP~are diagonaliz-
able, this gives values to the ratios appearingin the conditions (73), which
can in turn be takenas constraintswith respectto the remaininggeneratorsof
it1 (X’). As a further side-effect,the valuesof the ratios in (73) forceM to be
of the form

M=N~DN (74)

where N+ are completely determinedupper and lower unipotent matrices.
Thus the resultingindeterminacyis on the diagonalfactorD.

We noticethat thisresult reliesultimatelyon the assumptionthatM admitsa
Gaussfactorization.Indeedthe conditions(73) aremeaningfulonly if m33 ~ 0
and 4,, ~ 0 and this is precisely the condition M must satisfy to admit a
Gaussfactorizationin the form (74). As such, our result must hold in any
rank n, for, if ME SL(n,C) exists andcanbe representedin the form (74),
then the equation

MT7=T~M, yEiti(X’)

canbe recastinto the form

NT7NT’ = D’ (N~T~N~’)D

which clearly can hold only if both N_ FISt, NT’ and N~T~’N.~’are diagonal
for any y E it1 (X’). Conversely,diagonalizingthe monodromy aroundP~
and imposing the constraintsfor SL(n, C) clearly producesan intertwiner
admittinga Gaussfactorization.Thus our result can be statedmore precisely
by sayingthatdiagonalizabilityof the monodromyis a necessaryandsufficient
condition for asolution of the Toda Field equationsin termsof a Bloch wave
basisto exist.

Finally we can carry out the quantizationof this Toda theory in the same
way andwith the samelimitations as for the Liouville theory in the previous
section.Howeverherewe omit explicit formulas,which canbe easily inferred
from thoseof ref. [23].

8. Liouville equation and uniformization

The emergenceof the Liouville equationin the context of uniformization
theory is such a celebratedresult in mathematicsthat we can hardly avoid
clarifyingwhat is similarandwhat is different in the DS andthe uniformization
approaches.To such purposewe devotethis last section.
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Let us briefly review the uniformIzationtheory of curvesbasedon pseu-
dogroupsand differentialequations [14,25]. Although it does not yield such
strong results as the onebasedon discontinuousactionsof Fuchsiangroups
[26,27], in recenttimesit hasbecomepopularamongphysicistsbecauseit is
basedon the idea of symmetry.Rememberthat we are sticking to the genus
g> 1 case.

By uniformizingwe meanfinding acollection of functions {A,,}, subordinate
to the atlas { U,,, z,,}

A,,: U,, ~‘ V,, C

which arerequiredto be local homeomorphismsandsuch that:

A,,(z,,) = a,,11A11(z11) + b,,11 (75)
c,,11A11(z11) + d,,11

In this way, the new complexatlas {U,,, A,, o z,,} is such that all local charts
are connectedthrough projectivetransformations.The collection {A,,} canbe
thoughtof as a sectionof a flat PSL(2,C) bundleon X. These remarksare
usedin [14] to explicitly constructthe uniformizing atlasin termsof sections
of adequatevector bundles.The result is as follows. A projective structure
(subordinateto the complexone on X) is constructedtaking a section {c~,,=

~ of the bundle

T® K”
2

whereK’/2 is a squareroot of the canonicalbundleand T is a flat SL(2,C)
bundle, that is, an element T E H’(X,SL(2,C)). The coordinatesections
{A,,} are

A,,(z,,) = ~,,,(z,,) (76)

~2,,(Z,,)

and~ ~2,, are two independentsolutionsof the differential equation

d2
+ ~u,,(z,,)c~,,(z,,) = 0, i = 1,2 (77)

with normalizedWronskian. The equationin (77) glues coherentlyon X as
{u,(z,,)} is a projective connection[14,28], that is, a 1-coboundaryfor the
1-cocycle {f,,

11,zp} dzp
2, namely:

{f,,p, zp}dzp2 = u
11 (z11 )dz112 u,,(z,,)dz,,

2

where {f,,
11, z11} is the Schwarzianderivative and z,, = f,,11 (zp). By Serre

duality, H’ (X,K
2) = 0, so that projectiveconnectionscertainly existand are

in one-to-onecorrespondencewith projectivestructures[14].
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Let us now define the collectionof matrices

F 1 — ( ~‘,,,(z,,) ~‘,,,(z,,) 78
— ~ ~,,(z,,) ~

2,,(z,,)

One can prove that there exists a flat vector bundlewhich supportsa truly
analyticconnection

/ 0 l\
= 3,, + A,1, A,, = i I (79)\~~.u,,(z,,) 0)

such that (77) can be rewritten as a linear system

= 0

andT is realizedas the holonomyof {V,,}.
Once a uniformizationof X is found, one would write down a solution of

the Liouville equation(1) by using the projective charts to pull back on X
the standardPoincarémetric on the upper half plane H, obtaining the very
classicalformula

2~, — I0A,,1
2 80

(ImA,,(z,,))

Onecanverify that (80) definesa (1, 1)-form by usingthe projectivetransfor-
mation (75). This requiresthe structuregroupto be reducedfrom PSL(2,C)
to PSL(2,11) and the coordinatesections{A,,} to take their values in H. We
mustnoticethat this is too optimistic, in general.Whatonedoesobtain, is the
so-called“developingmap” [29,30]

f:X~QcP’

where X is the universal cover of X, which is equivariantwith respectto
the action of it, (X) on X and of a certain group F c PSL(2,C) on Q.
We shall not dwell on the definition of f any longer, except to mention
that f is the global equivariantmapcorrespondingto the sectionof the flat
PSL(2,C )-bundle over X, thereforeit is locally a projectivechart [30]. The
homomorphismp : it,(X) —~F with respectto which f is equivariant is the
holonomyof the projectivestructure [30].

Since X has genusg > I, f is a coveringmap, but Q is not analytically
equivalentto H in general[29]. Thus formula (80) is perhapsto beinterpreted
by saying that one has to use local sectionsto f to transfer the standard
hyperbolicmetric to Q (asin ref. [2] for the caseof Schottkyuniformization)
and then locally pull-backthis last one down to X.

Bearingin mind thesewarnings,let us briefly mention how various classi-
cal formulas [1] arise in this formalism.Considerthe (improved) Liouville
energy—momentumtensor:
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T,,(z,,) = (3~i,,)
232qi,,

It is holomorphicon-shell. Plugging in (80), we find:

Y,,(z,,) =

so thatwecanidentify it with the projectiveconnection—~u,,(z,,).Moreover,
using the spin — 1/2 realization of the projectiveatlas A,, = ~1,,/~2a, we can
write the Liouville field as:

= ~ (81)

with

A,, 1
= (3A,,)’/2’ ~2,, = (3A,,)’/2

8.1. A comparisonbetweenthe two typesofsolution

Thus far in this section we have presented the uniformization point of
view concerningthe Liouville equation.Onemight evensuperficiallyconclude
that the reconstructionformula (81) is the sameas the one in the previous
subsection(7). Althoughthe similaritiesbetweenthe two formulasarecertainly
not accidental,thereare two importantdifferences.The first one is that our
approachin the previoussubsectionis inspired by conformal field theory.
As is very profitably done in such a theory we split our problem into two
independentholomorphic andantiholomorphicparts. In the languageof this
sectionthis amountsto consideringthe solutionsof the Liouville equationof
the form

e2~”=
(A,,(z,,)—B,,(±~,,))2

where B is independentof A. It is obviousthat in order to obtain a (1,1)
form from this formula,onehasto put constraintson the monodromyof {B,,}.
If one in addition requiresreality of e2~dz,,d±,,,the flat cocyclesare again
reducedto PSU (1, 1) with the additional freedomof taking B,, (±,,)to be a
projectivetransformof A,, (z,,).

The second important difference with the uniformization setting is that
we actually consideronly the solutions ensuing from the holomorphic and
antiholomorphicDS linear systems.This allows us to representthe solutions
in termsof bosonic oscillators.We proved in [8] in genus0 that there is a
one-to-onecorrespondencebetweenthe spaceof free bosonic oscillators and
hyperbolicsolutionsof the Liouville equation.The sameproofdoesnot work
in highergenus.A simple examplewill show the difficulties we run into (on
this point, see [31]).
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In order to extendthe proof of [8], one should be able to ‘transform’ the
connectionA in (79) (for simplicity we drop the label a) into the upper
triangularconnectiontypical of the DS system.In this way one would endup
with the bosonizationformula

~1=e°, 0~=0

andwould find the relation:

+ (3p)
2 = ~{A z} = Y(z) (82)

which is aMiura transformation.It is matterof coordinatepatchingto prove
that in orderfor (82) to be consistent,3p should transformas a holomorphic
connectionon K’/2 and,as we provedabove,suchobjectsdo not exist. Thus,
paying attention to the residues,3~can be taken to be meromorphicwith
simple poles. This is still not enough, since in a coordinatetransformation
ç’~and ~2 mix with each other and this is compatiblewith (82) if and only
if the transitionfunctions { T,,

11 } of the flat bundle T are triangularmatrices.
However this is hardly acceptableif T hasto be a flat bundlearising from
(or yielding) uniformization.For, in this casethe projectivestructureshould
actuallybe an affine one,which cannotexist for a surfaceof genusg> 1 [14].

The last remark,basedon amonodromyargument,pointstowardaclear-cut
separationbetweenthe uniformizationsolution for a compactRiemannsurface
and the solutionsbasedon the DS systems(which we rely on for quantizing
the theory): we are not going to find the uniformizationsolution amongthe
latter. In fact DS systemsonly define (branched)affine structureson X with
somepoints removed (see below), ratherthan projective structures(as the
uniformizingsolutionsdo). In the next subsectionwe clarify this point.

8.2. The DSsystemandbranchedaffine structures

An affine structureon a generalsurfaceX is a collection of local charts{A,,}
relatedby the transformationrule

A,,(z,,) = a,,11A11(z11)+ b,,11 (83)

The target spaceis assumedto be C, although also P
1 can be considered.

An affine structurecan be obviously consideredas a special kind of projec-
tive structure.However, as proved in [29,14], affine structuresdo not exist
wheneverthe surfaceis compact (and of genusg > 1), as their existenceis
equivalentto the triviality of the canonicalbundle K. Allowing for branch
points,that is pointswherethe local charts{A,,} maynot be local homeomor-
phism, avoidsthatobstruction,so that theseslightly generalizedstructuresdo
existevenon compactsurfaces[32].
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From the analysis developed in sections 2 and 3, it follows that the DS
systemis related to affine structuresrather than to projective ones.Indeed,
given asolution (a,,,,a2,,) of the DS systemwe canform the maps

= —a2,,/a,,, (84)

which from the monodromypropertiespreviously analyzedhaveexactly the
transformationproperty (83). Now we have

= a1
2

andsince

a,~2(Q)= h,,(Q)2h,,(Q,,)2exp(_2Pn]wn)

we see that branch points occur at the zeroes of h. Thus branch points
unavoidablyappear,evenif we considera non-closedsurface.The maps{f,,}
will in generalbebadly behavedin the vicinity of the pointsP~andP_ where
the fields haveessentialsingularities.Note, though, that, if we set to zero all
the modesPk exceptthosecorrespondingto the holomorphicdifferentials in
the KN basis,we can undeletethe points P+ and P_ and the only singular
points left will be the zeroesof h. This is the standardcasetreatedin the
mathematicalliterature(see [32]).

The mapsin (84) globalize to give a (branched)developingmap [33]

and the holonomy homomorphism into the affine group:

p:ir,(X’) —*A(l,C)

Actually, from our previous results we are able to explicitly compute this
homomorphism

p(y)z = C~iZ + S
7i

for any z E C.

Appendix A

Here we explicitly calculate the cocycle s7. Before doing this, it is necessary

to see in somedetail how to realize the isomorphism

H’(M, G) ~ Hom(ir,(M), G)/G

The main point is to describe the fundamental group from within a Cech
setting. This is done in the following way. Fix a base-point on the manifold and
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a suitablegood-covering,of which we fix a certainelementU0 containingthe
basepoint. Givena closedpath y, we cover it with a chain (U0, U,,..., U~,Uo)
of open setsstartingandendingat U0. Homotopicpathscorrespondto chains
such that we can passfrom one to the other by a finite sequenceof simple
operationsconsistingin replacinga pair (U,, U,+,) of consecutiveelements
by a triple (U,, U1, U,~,) with non-void intersection.The inversepath y’
correspondsto the chain ((Jo, (J~,...,U,, Uo), andso on. Thisdefinesthegroup
it, (U, U0). The true fundamentalgroup is obtainedby taking the direct limit
over the coveringsU. Given the cocycle g = {g,~} the correspondingelement
in Hom(it, (M), G) is the one assigningto the chain (U0, U,,..., U,,, U0), the
group elementg0, . g,2 .. . g,,~,, . g,,0. It is clear that this operation is well-
defined up to conjugationand compatiblewith refinementsof the covering
(full detailsin [14]).

Next, in order to have the necessaryformulas at hand, and also to put
the significanceof S~in the right context,we quote from [12] the following
theorem:on any connectedmanifold M carryinga flat bundleF, there is an
isomorphism

H’(M,~) ~ H’ (it, (M),F)

where ~ is the sheafof locally constantsectionsof F, F is the associated
characteristicrepresentationand the spaceat the RHS is the group of crossed
homomorphisms of it1 (M) into the representationspaceof F #9 modulothe
trivial ones.

We recall that a crossedhomomorphismu of a group H into a H-module
V is a mapu : 11 —~ V satisfying

u(xy) = y’ . u(x) + u(y)

x, y E 11, wherethe dot standsfor the actionof H on V. The space of all crossed
homomorphismis denotedby Z’ (H, V). The trivial crossedhomomorphisms
(i.e. the coboundaries)are thosegiven by

u(x) = V — X’ 7)

for v E V. The space of the coboundariesis denotedby B’ (H, V). Thus
H’(H, V) = Z’(H, V)/B’(H, V).

It is now worth describingthe explicit form of the isomorphismH’ (M, ~)
~ H’ (it, (M),F). We use the representation of it,(M) we are now familiar
with, namely the onegiven by it, (U, U0). For a cocycle {A,,11} E Z’ (U, ~),the
correspondingelementin Z’ (it, (U, U0), F) is given by

A7 = (F,,,,2 . . F,, ) . A,,,,, + (F,,2,,3 . . ~ ) . A,,,,2

+ . . . + F,, ~ ,,, . A,,, 2~p— + A,,~—

#9 The representation spaceof F can be taken to be c’ where r is the rank of F.



F. Aidrovandi and L. Bonora /Journal of Geometry and Physics 14 (1994) 65—109 103

where y is the chain (U,,,, U,, U,,,) based at U0. It is a standard matter of
tracing all the relationsto verify that this correspondenceis well definedon
the classesand goesthroughwhen taking the direct limit on the coverings.It
is also easyto verify the cocycle condition starting directly from the formula
above.We refer to [12] for the details.

The point is now simply to insert the KN parametrizationinto the expres-
sionsfor c,,11 and d,,11 andapply the general formulas we quotedabove. To
keepall the matter conceptually (if not practically) more manageable,it is
better to recasts = 5,,p in slightly different form, perhapsgiving it a nicer
geometricalsignificance.Indeednotice that the transformationrule (23) for
a1 canbe rewritten in the following form

e
2~’~”~dz,, = c e2c,~2~dzp

and can be interpreted as the definition for each a, fi of a 1-form /,,p:

~ e2C~dz,, on U,,
= ~ c~e2~dzp on U

11

It is easy to see that the two prolongationsç
5,,~,~ from U,, agree on the

intersectionU
11 n U7, so that we can drop the second index: ~,,p—~çb,,. Inserting

the explicit expressionfor d,,11 and the definition of s,,11, we find

= f ~p = —c,~11 f 1:/I,,

(Qfl,Q,) (Q~,Qp)

where (Q,,, Q~) is the 1-simplex joining Q,, with Q11.

At this point formula (26) is inferred plugging the equationaboveinto the
expressionof s7 as an elementof Z’ (it, (U, U0),C

2). Here are the first few

steps.Considerfor instancethreeopensetsU,,, U
11, U7. Accordingto the quoted

prescription we must consider

c~7s,,11 + 5$7

which, using the previously introduced forms {çb,,}, reads

cfl7 f ~- f ç~7= ~ f ~p - C~ f ~p

(Q~~,Qp) (Qp,Qy) (Q,,Q/J) (Qp,Qy)

_c~~ f ~
(Qn,Qy)

so that, inserting the KN parametrization into ~11’we find

h~(Q~Y
2exp(2~Pfl7wfl) f exp (—2 ~Pkf wk) h(z)2

(Q,Q~) k
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Next add U~at the end of the chain. The relevantquantity now is

c~5c~7s,,11 + c~osfly +
5

7,i

and, usingthe result for threesets,we reexpressit as

~ f ~fl - c~ f ~
(Q~,Q~) (Qy,QJ)

but the forms çb~~and c~7q~parethe sameon U11 fl U7, so thatthe last expression

can be written in termsof the integralof a uniqueform we keepcalling q~7:

c~c~,s,,11 + c/,~sp7 + s~o = —c~f ~
(Qa,Q~)

Plugging in againthe expressionin terms of the KN basis we find the same
formula as the one relative to the threesets,exceptfor the shift of indices:

h~(Q~
2exp(2~Pfl7wfl) f exp (_2~PkIwk)h(z)2

~Q,QJ~ k

and so on. It is clear that we obtain the formula (26).

Appendix B

Here we show that conditions (41), (42), (43) are equivalentto the uni-
valenceof the solution obtainedfrom (7). Sufficiency being obvious, only
necessity is to be proved. Thus assumethata collection {M,,} such that

e~” = k2k~~2e~~

indeed exists, where each e~’~is given by (7). This means that the quadratic
form defined by (7) must be an SL(2,C)-scalar,which in turn is true if and
only if

M
11 =

tT,,JJM,,T,
11

In the representationspaceHom(it, (X’), SL(2, C ) ) /SL(2,C) this is refor-
mulatedby saying that the characteristicrepresentationsT and TV must be
equivalent,that is, we must have

MT7 = T~’M

for a certain M E SL(2,C) and any y E it, (X’). Writing down the components

of M as

M=(x Y~, detM=l
u~ V J
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and working out the matrix products, one easilyderivesthe following equations

C7 = C~’

_~ y2
— — — —C

V V
- u u~2
S7 = — — —C

V V
7

A glance at Appendix A will immediately convince the reader that these
relations exactly mean that the cocycles s and ~ are coboundaries. This proves
necessity.

Now it is an immediateconsequencethat the characteristicrepresentations
TV and 1~must be diagonalizable.Indeed if f = y/v, and from the above
coboundaryrelations,it follows at oncethat

T—~’ C
7 0\/l 0~(C70 ~(l0

\~C~S7C~’)~-f i)~o c~)f 1

A similar relation holds for T7 with 7 = u/V. Diagonalizability meansthat
the extensionclassesrepresentedby TV and T are trivial, and so are the flat
bundlesT and~T.

Appendix C

In our analysis of the univalence for the Liouville solutions in Appendix B
and the Toda solutions in section7, we used the hypothesis that the intertwiner
M is Gauss factorizable. We also remarked that this condition is essential for
the Bloch-wave basis representation to exist. However, it is interesting to see
what happens if we drop this requirement. Let usanalyzethe Liouville casein
somedetail.

Let M be the matrix introduced in Appendix B. The condition V ~ 0 is
necessaryandsufficient for M to admit a Gauss factorization in the form

M = N~D N

with D diagonalandN±upperand lower unipotentmatrices.
Thus let us suppose that v = 0, so that

~1(x Y~ u=—!

\u Oj y

Thenthe familiar equation

MT~=T~’M, yEJt,(X’)

gives the conditions:
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(C.l)

= -~s~+ ~(l-C~) (C.2)

Thus we see that in this casethe conditions so obtainedare such that the
antichiral monodromymust representthe sameflat bundleas the chiral one.
Indeed, condition (C. 1) forces the diagonal elements to be the same, while
condition (C.2) tells us that the representationsT, T differ by a conjugation
in the lower Borel subgroup of SL(2,C). One hasdirectly

T( 0~T(y’ 0

\~xy ) \—xy

as desired. As for the flat bundles, this means that the extensions

0~C’~T~C~0

0~C’~T~C~0

differ by an automorphism.
It is to be noticed that in this casethe flat bundle T is allowed to be a

non-trivial extensionclass.
Finally, the following similarity with the uniformizationformulas is worth

mentioning.In the specialcasex = 0, y = —1 we have~, = s7 so that ~ = T
and

= c72,,a1,, — a,,,O~,,

The classof solutionsanalyzedin this Appendix do not belong to the phase
spaceFo. For this reasonwe call them non-standard.The relevanceof these
solutions for quantization is an open question.

Appendix D

It is interestingto examinethe conformalpropertiesof the v-basis in terms
of thesymplecticstructureintroducedin section5. Let usconsiderthe energy—
momentum tensor

= P
2 + P’

which naturally appears in the DS system through the equation

02a
1 = Ta,, i = 1,2

As it turns out, 2T is a projective connection. According to the decomposition
(3), we can rewrite

T=p
2+Vp+~Ro, R

0=2(Fj+F~) (D.l)
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R0 is a fixed projective connection, and V = 0 + 2n1’0 representsin this
Appendix the covariantderivativeapplied to the weight n tensors. Since p

2

andVp areholomorphictwo-forms on X’, we can expandthem on the basis
of quadratic differentials

+ Vp) = >lkQk

i.e.

I — I Jnm 1,-n
k—~ k PnPm+~kPn

n.m

where

in m I n m ~- n I t~7 fl
= ~—~fekw w =

Cr C,

Using the basic Poisson brackets (45) we find — in this Appendix we abandon
the simplified notation for the Poisson brackets adopted in section 5, therefore
the following Poisson brackets are the usual ones —

{ln,lm} = Cn”,’mlk — ~—~j~2o(ln~lm) (D.3)

where ~ has the sameform as in eq. (16) provided the role of projective
connectionbe playedby R

0, eq. (D.l). Therefore, up to an irrelevant — sign,
eq. (D.3) represents a realization of the extended KN algebra (17).

We can now easily work out, for example,the Poissonbracket

{l,,,w,(Q)} = e~(Q)p(Q)yi,(Q) — ~Ve,,(Q)w,(Q) (D.4)

The RHS of this equation is nothing but Le,, i.e. the Lie derivative along the
vector field e,,, applied to the weight —~ tensor w~(Q). This is exactly what
we expect.

As for W2(Q) the calculation is longer, but oncethe formalism is established
we can safely rely on the genuszero results [71which guaranteethat ~~I2(Q)

behaveslike aweight— tensoras well. We stressthatthe a-basisdoesnot have
good tensorialpropertieswith respectto the symplectic structureintroduced
in section 5.

We remark that the above equations (D.3) and (D.4) remainunchangedif
we replace the Poisson brackets with the Dirac brackets defined in subsection
5.5. Indeedthe Poissonbracketsof the l,,’s with F,. and Fr turn out to be
proportional to Fr and ~r, respectively.Thus the energy—momentumtensoris
the generatorof the conformal transformationsalso with the correctbracket
on the constrained manifold in the phase space.
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